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1 Recall of SLR
For the observed values {(Xi, Yi)}ni=1, we can have the simple linear regression model among parameters.

Yi = β0 + β1xi + ϵi. (1)

where ϵi satisfies E[ϵi] = 0 and Var(ϵi) = σ2.
The least squares estimates (LS) of the regression coefficients are:{

β̂1 =
Sxy

Sxx
,

β̂0 = ȳ − β̂1x̄.

where Sxy = 1
n

∑n
i=1(xi − x̄)(yi − ȳ) is the sample covariance and Sxx = 1

n

∑n
i=1(xi − x̄)2.

1.1 Expectations and variance properties
E[β̂0] = β0. (2)

E[β̂1] = β1 ⇒ E[Sxy] = E[β̂1Sxx] = β1Sxx. (3)

Var(β̂1) =
1

n2S2
xx

∑
i

(xi − x̄)2Var(yi) =
σ2

nSxx
. (4)

Var(β̂0) =

(
1

n
+

x̄2

nSxx

)
σ2 =

Sxx + x̄2

nSxx
σ2 =

∑
x2
i

n2Sxx
σ2. (5)

where Sxx + x̄2 = 1
n

∑
x2
i .

Var(β̂1) =
σ2

nSxx
=

Var(Sxy)

σ2Sxx
⇒ Var(Sxy) =

σ2Sxx

n
. (6)

1.2 For noise ϵ in SLR
Theorem 1. Let ϵ̂i = yi − ŷi. The estimator

σ̂2 =
1

n− 2

n∑
i=1

(yi − ŷi)
2.

is an unbiased estimator of σ2, i.e., E(σ̂2) = σ2.

Proof. The fitted values in the regression model are given by:

ŷi = β̂0 + β̂1xi = ȳn − β̂1x̄n + β̂1xi.
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The residual sum of squares can be expanded as:
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

[
(yi − ȳn)− β̂1(xi − x̄n)

]2
.

Expanding this expression, we have:
n∑

i=1

(yi − ŷi)
2 =

n∑
i=1

(yi − ȳn)
2

︸ ︷︷ ︸
T1

+ β̂2
1

n∑
i=1

(xi − x̄n)
2

︸ ︷︷ ︸
T2

− 2β̂1

n∑
i=1

(yi − ȳn)(xi − x̄n)︸ ︷︷ ︸
T3

.

First, we compute E(T2) and E(T3):

E(T2) = nSxxE(β̂2
1) = nSxx ·

E(S2
xy)

S2
xx

=
nE(S2

xy)

Sxx
.

E(T3) = 2nE
[
β̂1Sxy

]
= 2nE

[
Sxy

Sxx

]
=

2n

Sxx
E(S2

xy).

Therefore:
E(T2)− E(T3) = − n

Sxx

[
Var(Sxy) + E(Sxy)

2
]
.

Substituting Var(Sxy) =
σ2Sxx

n and E(Sxy) = β1Sxx, we obtain:

E(T2)− E(T3) = −σ2 − nβ2
1Sxx.

Next, we compute E(T1). The regression model can be expressed as:

yi = β0 + β1xi + ϵi, ȳn = β0 + β1x̄n + ϵ̄n.

Therefore:
E(yi − ȳn)

2 = E [β1(xi − x̄n) + (ϵi − ϵ̄n)]
2
.

Expanding this expression, we get:

E(yi − ȳn)
2 = β2

1(xi − x̄n)
2 + E(ϵi − ϵ̄n)

2 + 2β1(xi − x̄n)E(ϵi − ϵ̄n).

where:
E(ϵi − ϵ̄n)

2 = E
[
ϵ2i + ϵ̄2n − 2ϵiϵ̄n

]
.

Since Var(ϵ̄n) = σ2

n and E(ϵiϵ̄n) = σ2

n , it follows that:

E(ϵi − ϵ̄n)
2 =

n− 1

n
σ2.

Hence:
E(T1) =

n∑
i=1

E(yi − ȳn)
2 = nβ2

1Sxx + (n− 1)σ2.

E

(
n∑

i=1

(yi − ŷi)
2

)
= E(T1) + E(T2)− E(T3)

= nβ2
1Sxx + (n− 1)σ2 − σ2 − nβ2

1Sxx = (n− 2)σ2.

Therefore:

E(σ̂2) =
1

n− 2
E

(
n∑

i=1

(yi − ŷi)
2

)
= σ2.
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1.3 Maximum Likelihood Estimation and Least Squares Equivalence in Simple
Linear Regression

Consider the simple linear regression model:

yi = β0 + β1Xi + εi, i = 1, 2, . . . , n,

where yi is the response variable, Xi is the predictor variable, β0 and β1 are unknown parameters, and εi
are independent error terms following a normal distribution N (0, σ2). Under this model, the conditional
distribution of yi given Xi is:

yi | Xi ∼ N (β0 + β1Xi, σ
2).

The pdf of yi given Xi is:

fβ0,β1(yi | Xi) =
1√
2πσ

exp

(
− (yi − β0 − β1Xi)

2

2σ2

)
.

The log-likelihood function for the parameters β0 and β1 is obtained as follows:

ℓ(β0, β1) =

n∑
i=1

log fβ0,β1
(yi | Xi).

Substituting the pdf into the log-likelihood function, we have:

ℓ(β0, β1) =

n∑
i=1

log

(
1√
2πσ

exp

(
− (yi − β0 − β1Xi)

2

2σ2

))
.

Simplifying the expression:

ℓ(β0, β1) = −n

2
log(2πσ2)− 1

2σ2

n∑
i=1

(yi − β0 − β1Xi)
2.

1.3.1 Equivalence of MLE and Least Squares

To find the maximum likelihood estimates (MLEs) of β0 and β1, we need to maximize the log-likelihood
function with respect to these parameters. Since the term −n

2 log(2πσ2) is a constant with respect to β0 and
β1, maximizing ℓ(β0, β1) is equivalent to minimizing the residual sum of squares:

max
β0,β1

ℓ(β0, β1) ⇔ min
β0,β1

n∑
i=1

(yi − β0 − β1Xi)
2.

This minimization problem is precisely the objective of the least squares (LS) method. Therefore, under
the normality assumption of the error terms, the MLEs of β0 and β1 coincide with the LS estimates:

β̂MLE
0 = β̂LS

0 , β̂MLE
1 = β̂LS

1 . (7)

1.3.2 Distributional Properties of β̂1

The LS estimate of the slope parameter β1 is given by:

β̂1 =
1

n

∑
i

(xi − x̂)yi,

Under the normality assumption of the error terms, β̂1 follows a normal distribution with mean β1 and
variance σ2

SXX
:

β̂1 ∼ N
(
β1,

σ2

nSXX

)
. (8)
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1.3.3 Standardization of β̂1

To conduct hypothesis testing for β1, we standardize β̂1 by subtracting its expected value, multiplying by√
SXX , and dividing by σ. The standardized variable follows a standard normal distribution:

√
nSXX(β̂1 − β1)

σ
∼ N (0, 1). (9)

This result is fundamental for constructing confidence intervals and performing significance tests for the
slope parameter β1.

1.4 Regression Model Fit Evaluation
In statistics and econometrics, TSS (Total Sum of Squares), ESS (Explained Sum of Squares), and RSS
(Residual Sum of Squares) are important metrics for measuring the fit of a regression model. Their relation-
ship can be expressed by the formula:

TSS = ESS +RSS.

1.5 Definitions and Explanations
• TSS : The total sum of squares, representing the total variation between the observed values and their

mean.
TSS =

∑
(yi − ȳ)2.

• ESS : The explained sum of squares, representing the part of the variation that is explained by the
regression model.

ESS =
∑

(ŷi − ȳ)2.

• RSS : The residual sum of squares, representing the part of the variation that is not explained by the
regression model.

RSS =
∑

(yi − ŷi)
2.

Specifically, TSS can be decomposed into two parts: one part is ESS, indicating the variation in y caused
by changes in the independent variable x; the other part is RSS, indicating the variation in y caused by
other factors besides the linear influence of x on y.

Table 1: Degree of Freedom and Distribution
Sum of Square Degree of Freedom Distribution

RSS 1 σ2χ2(1)
ESS n− 2 σ2χ2(n− 2)
TSS n− 1 σ2χ2(n− 1)

Coefficient of Determination R2

The coefficient of determination is defined as:

0 ≤ R2 =
ESS

TSS
= 1− RSS

TSS
≤ 1. (10)

where TSS =
∑n

i=1(Yi− Ȳ )2 is the total sum of squares. R2 represents the proportion of variance explained
by the model, ranging between [0, 1].

√
nSxx(β̂1−β1)

σ√
ESS
σ2

⇒
√
nSxx(β̂1 − β1)√

ESS
∼ t(n− 2). (11)
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2 Multiple Linear Regression Model
Consider the multiple linear regression model:

Yi = β0 + β1xi1 + β2xi2 + · · ·+ βpxip + ϵi.

or in matrix form:
Yn×1 = Xn×pβp×1 + ϵn×1. (12)

where X is an n× p design matrix, β is a p× 1 vector of regression coefficients, and ϵ is an n× 1 error vector
satisfying E[ϵ] = 0 and Var(ϵ) = σ2I.

To find the least squares (LS) estimator β̂, we start by defining the objective function:

L(β) =
1

2
∥Y −Xβ∥2.

Taking the gradient of L(β) with respect to β and setting it to zero yields the normal equations:

∇(L(β)) = −XT(Y −Xβ) = 0.

Assuming that XTX is invertible (i.e., the columns of X are linearly independent), we can solve for β:

β̂ = (XTX)−1XTY. (13)

This is the LS estimator for β.

2.1 Statistical Properties of the Estimator
2.1.1 Unbiasedness

The LS estimator β̂ is unbiased. This can be shown by taking the expectation of β̂:

E[β̂] = E[(XTX)−1XTY].

Substituting Y = Xβ + ϵ, we get:

E[β̂] = (XTX)−1XTE[Xβ + ϵ] = (XTX)−1XTXβ = β.

Thus, β̂ is an unbiased estimator of β.

2.1.2 Variance

The variance of β̂ is derived as follows:

Var(β̂) = Var[(XTX)−1XTY].

Substituting Y = Xβ + ϵ, we have:

Var(β̂) = (XTX)−1XTVar(Y)X(XTX)−1.

Since Var(Y) = Var(Xβ + ϵ) = σ2I, this simplifies to:

Var(β̂) = (XTX)−1XT(σ2I)X(XTX)−1 = σ2(XTX)−1.

The least squares (LS) estimator β̂ has the following properties:

E[β̂] = β. (14)
Var(β̂) = σ2(XTX)−1. (15)
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Figure 1: Projection Illustration

2.2 Projection and Error Vectors
2.2.1 Projection Matrix

The predicted values Ŷ and residuals e are:

Ŷ = Xβ̂ = X(XTX)−1XTY = PY (P is called projection matrix)

e = Y − Ŷ where e ·Y = 0. (16)

2.2.2 Eigenvalues of Projection Matrix

Theorem 2. A projection matrix P satisfies:

PT = P (Symmetric), P2 = P (Idempotent).

The eigenvalues of P are either 0 or 1.

Proof. Let Px = λx. Using the idempotent property:

P2x = Px =⇒ λ2x = λx =⇒ λ(λ− 1) = 0 =⇒ λ = 0 or λ = 1.

2.2.3 Unbiased Estimation of σ2

Theorem 3. The residual sum of squares eT e divided by n− p is an unbiased estimator of σ2:

E
[
eT e

n− p

]
= σ2. (17)

Proof. Let e = Y − Ŷ = (I −P)Y, where P = X(XTX)−1XT is the projection matrix. The residual sum
of squares is:

eT e = YT (I−P)T (I−P)Y = YT (I−P)Y.

Substituting Y = Xβ + ϵ into the expression:

eT e = ϵT (I−P)ϵ.

Taking the expectation:
E[eT e] = σ2tr(I−P) = σ2(n− p).

Thus:
E
[
eT e

n− p

]
= σ2.
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